Propagation in a kinetic reaction-transport equation: travelling waves and accelerating fronts

نویسندگان

  • Emeric Bouin
  • Vincent Calvez
  • Grégoire Nadin
چکیده

In this paper, we study the existence and stability of travelling wave solutions of a kinetic reactiontransport equation. The model describes particles moving according to a velocity-jump process, and proliferating thanks to a reaction term of monostable type. The boundedness of the velocity set appears to be a necessary and sufficient condition for the existence of positive travelling waves. The minimal speed of propagation of waves is obtained from an explicit dispersion relation. We construct the waves using a technique of suband supersolutions and prove their weak stability in a weighted L space. In case of an unbounded velocity set, we prove a superlinear spreading. It appears that the rate of spreading depends on the decay at infinity of the velocity distribution. In the case of a Gaussian distribution, we prove that the front spreads as t. Key-words: Kinetic equations, travelling waves, dispersion relation, superlinear spreading.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Front propagation in a kinetic reaction-transport equation

In this paper, we study the existence and stability of travelling wave solutions of a kinetic reactiontransport equation. The model describes particles moving according to a velocity-jump process, and proliferating thanks to a reaction term of monostable type. The boundedness of the velocity set appears to be a necessary and sufficient condition for the existence of positive travelling waves. T...

متن کامل

Velocity enhancement of reaction-diffusion fronts by a line of fast diffusion

We study the velocity of travelling waves of a reaction-diffusion system coupling a standard reaction-diffusion equation in a strip with a one-dimensional diffusion equation on a line. We show that it grows like the square root of the diffusivity on the line. This generalises a result of Berestycki, Roquejoffre and Rossi in the context of Fisher-KPP propagation where the question could be reduc...

متن کامل

Generalized travelling waves for reaction-diffusion equations

In this paper, we introduce a generalization of travelling waves for evolution equations. We are especially interested in reaction-diffusion equations and systems in heterogeneous media (with general operators and general geometry). Our goal is threefold. First we give several definitions, for transition waves, fronts, pulses, global mean speed of propagation, etc. Next, we discuss the meaning ...

متن کامل

On the Analysis of Travelling Waves to a Nonlinear Flux Limited Reaction–diffusion Equation

In this paper we study the existence and qualitative properties of travelling waves associated to a nonlinear flux limited partial differential equation coupled to a Fisher–Kolmogorov–Petrovskii–Piskunov type reaction term. We prove the existence and uniqueness of finite speed moving fronts of C classical regularity, but also the existence of discontinuous entropy travelling wave solutions.

متن کامل

Uniqueness of travelling fronts for bistable nonlinear transport equations

We consider a nonlinear transport equation as a hyperbolic generalisation of the well-known reaction diffusion equation. Themodel is based on earlier work of K.P. Hadeler attempting to include run-and-tumble motion into the mathematical description. Previously, we proved the existence of strictly monotone travelling fronts for the three main types of the nonlinearity: the positive source term, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017